





VENT-O-MAT NCV-B & NCV-BK Nozzle check valves





Vent-O-Mat®NCV-B



Vent-O-Mat<sup>®</sup>NCV-BK

Incorrect check valve selection can aggrevate surge and water-hammer in pipeline systems resulting in what is known as "Check Valve Slam" causing transients which could exceed the pipeline's working pressure by up to five times. Check valves can also be one of the biggest contributors to head loss within pipeline, which in turn increases power consumption. Vent-O-Mat's range of nozzle check valves addresses both these concerns by providing a \* non-slam valve with a very low pressure loss.

The valve utilises a ring-shaped disc as the closing member. Rapid \* slam-free closure is achieved utilising friction free helical springs and radial guides. Annular ring type nozzle check valves outperform center shaft nozzle designs (mushroom type) in respect of dynamic and head loss performance because of the low mass of the moving parts (ring shaped disc) and the superior pressure recovery capabilities inherent in the twoport annulus configuration.

### **Design Features and Advantages**

- Non-slam closure The valve responds rapidly to changes in velocity and the disc will tend to move to the closed position while little to no reverse flow occurs.
- Low pressure loss in the open position the annular disc forms two flow paths which increases the volume of flow through the valve
- Short closure time the short stroke length reduces closure time
- Friction free opening and closing helical springs and radial guides allow the disc to move from the open to closed position with limited resistance
- Tight shut-off achieved by metal to metal sealing and tested in accordance with BS EN 12266.
- No scheduled maintenance
- \* note that slam in a pipeline is highly dependent on the design and characteristics of the pipeline as a whole and that it is not just dependant on having a non-slam check valve.

# **World Class Performance**

# VENT-O-MAT<sup>®</sup>

## NCV-B



- Non-slam closure
- Rapid valve closure
- Very low pressure loss
- Tight shut off
- No resilient seats
- Maintenance free
- DN200 (8") DN1200 (48")
- PN10 Pn40 / ANSI 150 to ANSI 300

# Face-to-Face Dimensions (mm/inches) and Weights (kg/lbs)

| Valve Size Face-to-Face |      | o-Face | Weight<br>PN10-PN16 |      | Weight<br>PN25 |      | Weight<br>PN40 |      | Weight<br>ANSI 300 |      |       |
|-------------------------|------|--------|---------------------|------|----------------|------|----------------|------|--------------------|------|-------|
| mm                      | inch | mm     | inch                | kg   | lbs            | kg   | lbs            | kg   | lbs                | kg   | lbs   |
| 200                     | 8    | 230    | 9.1                 | 145  | 320            | 150  | 330            | 160  | 355                | 180  | 400   |
| 250                     | 10   | 290    | 11.4                | 165  | 365            | 160  | 355            | 180  | 400                | 200  | 440   |
| 300                     | 12   | 350    | 13.8                | 180  | 395            | 190  | 420            | 225  | 500                | 245  | 540   |
| 350                     | 14   | 405    | 16.0                | 315  | 695            | 280  | 620            | 325  | 720                | 365  | 805   |
| 400                     | 16   | 455    | 17.9                | 415  | 915            | 365  | 405            | 430  | 950                | 490  | 1080  |
| 450                     | 18   | 520    | 20.5                | 480  | 1060           | 525  | 1160           | 575  | 1270               | 685  | 1510  |
| 500                     | 20   | 570    | 22.4                | 540  | 1190           | 565  | 1245           | 630  | 1390               | 720  | 1590  |
| 600                     | 24   | 685    | 27.0                | 900  | 1985           | 935  | 2065           | 1050 | 2315               | 1340 | 1955  |
| 700                     | 28   | 800    | 31.5                | 1305 | 2875           | 1490 | 3285           | 1650 | 3640               | 1980 | 4365  |
| 800                     | 32   | 910    | 35.8                | 1700 | 3750           | 1800 | 3970           | 2150 | 4740               | 2360 | 5205  |
| 900                     | 36   | 1030   | 40.6                | 2430 | 5360           | 2885 | 6360           | 3300 | 7275               | 3570 | 7870  |
| 1000                    | 40   | 1135   | 44.7                | 3240 | 7145           | 3500 | 7720           | 3950 | 8710               | 4080 | 9000  |
| 1200                    | 48   | 1365   | 53.7                | 4320 | 9525           | 5220 | 11510          | 5800 | 12790              | 6000 | 13230 |





### NCV-BK



- Economical short face-to-face
- Non-slam closure
- Rapid valve closure
- Low pressure loss
- Tight shut off
- No Resilient seats
- Maintenance free
- DN200 (8") to DN1200 (48")
- PN10 to PN16

# Face-to-Face Dimensions (mm/inches) and Weights (kg/lbs)

| Valve | Size | Face-t | o-Face | Weights PN10-PN16 |      |  |  |
|-------|------|--------|--------|-------------------|------|--|--|
| mm    | inch | mm     | inch   | kg                | lbs  |  |  |
| 200   | 8    | 121    | 4.8    | 65                | 145  |  |  |
| 250   | 10   | 151    | 6.0    | 70                | 155  |  |  |
| 300   | 12   | 181    | 7.1    | 95                | 210  |  |  |
| 350   | 14   | 215    | 8.5    | 135               | 300  |  |  |
| 400   | 16   | 245    | 9.7    | 185               | 410  |  |  |
| 450   | 18   | 264    | 10.4   | 295               | 650  |  |  |
| 500   | 20   | 305    | 12.0   | 365               | 805  |  |  |
| 600   | 24   | 370    | 14.6   | 580               | 1280 |  |  |
| 700   | 28   | 430    | 16.9   | 745               | 1645 |  |  |
| 800   | 32   | 500    | 19.7   | 1000              | 2205 |  |  |
| 900   | 36   | 560    | 22.1   | 1550              | 3420 |  |  |
| 1000  | 40   | 680    | 25.6   | 2000              | 4410 |  |  |
| 1200  | 48   | 740    | 29.1   | 2800              | 6175 |  |  |

# **World Class Performance**





| ltem | Description    | Material           |                   |                   |  |  |  |  |  |
|------|----------------|--------------------|-------------------|-------------------|--|--|--|--|--|
|      | Description    | Ductile Iron       | Cast Steel        | Stainless Steel   |  |  |  |  |  |
| 1    | Valve Body     | ASTM A536 65-45-12 | ASTM A216 WCB     | ASTM A351 CF8M    |  |  |  |  |  |
| 2    | Flow Diffuser  | ASTM A536 65-45-12 | ASTM A216 WCB     | ASTM A315 CF8M    |  |  |  |  |  |
| 3    | Valve Disc     | AISI 316           | ASTM A350 CF8M    | ASTM A351 CF8M    |  |  |  |  |  |
| 4    | Spring Guide   | AISI 316           | AISI 316          | AISI 316          |  |  |  |  |  |
| 5    | Radial Guide   | AISI 420 3/4 HARD  | AISI 420 3/4 HARD | AISI 420 3/4 HARD |  |  |  |  |  |
| 6    | Helical Spring | ASTM A313-98       | ASTM A313-98      | ASTM A313-98      |  |  |  |  |  |
| 7    | Tie Bolt       | ASTM A193 B8M      | ASTM A193 B8M     | ASTM A193 B8M     |  |  |  |  |  |
| 8    | Fasteners      | ASTM A193 B8M      | ASTM A193 B8M     | ASTM A193 B8M     |  |  |  |  |  |

\* All sizes are available with Stainless Steel 316 (SS316) weld deposit seats.





The non-slam check valve will be double flanged and of a nozzle type design. The closing disc must have a ringshaped design to minimise the mass of the moving parts. The disc must be guided utilising friction free stainless steel helical springs and radial guides to ensure rapid slam free closure.

The valve must fully open at low flow rates to minimise pressure drop during normal operating conditions and respond rapidly to changes in velocity that the disc is at the point of closure before reverse flow occurs.

The valve body and diffuser design must create a venturi shape to create a pressure differential across the disc to assist in opening the valve and ensuring a high pressure recovery resulting in a low pressure drop across the valve. The valve will have a single central bolt to secure the flow diffuser directly to the body.

The valve shall be designed, manufactured, assembled and tested in accordance with ISO 9001 and BS EN 12266 standards.

# **Applications**

- ÿ Bulk water
- v Desalination plants
- Ÿ Water distribution plants



DN350 NCV-BODY SEAT MACHINING



DN900 (36") PN25 NCV-B FLANGE MACHINING



DN400 (16") PN25 NCV-B



DN200 (8") NCV-B



## **VENTOMAT Nozzle Check Valve Engineering Data**

Cv, Kv and Pressure Drop Calculation

$$Q = C_{v} \cdot \sqrt{\frac{\Delta P}{SG}}$$

Q: Water flow rate (US gpm) C<sub>v</sub>: Valve flow co-efficient (US gpm) ∆P: Pressure drop (psi) SG: Specific Gravity of Water

$$Q = K_{v} \cdot \sqrt{\frac{\Delta P}{SG}}$$

Q: Water flow rate (m³/h) K<sub>v</sub>: Valve flow co-efficient (m³/h) ∆P: Pressure drop (bar) SG: Specific Gravity of Water

| Check Valve Cv and Kv Values |                 |                   |                   |                    |                    |  |  |  |  |  |  |
|------------------------------|-----------------|-------------------|-------------------|--------------------|--------------------|--|--|--|--|--|--|
| Valve Size (inch)            | Valve Size (mm) | Cv Value<br>NCV-B | Kv Value<br>NCV-B | Cv Value<br>NCV-BK | Kv Value<br>NCV-BK |  |  |  |  |  |  |
| 8                            | 200             | 2320              | 2007              | 1164               | 1007               |  |  |  |  |  |  |
| 10                           | 250             | 3285              | 2842              | 1820               | 1574               |  |  |  |  |  |  |
| 12                           | 300             | 4361              | 3772              | 2621               | 2267               |  |  |  |  |  |  |
| 14                           | 350             | 5922              | 5122              | 3567               | 3085               |  |  |  |  |  |  |
| 16                           | 400             | 8028              | 6944              | 4659               | 4030               |  |  |  |  |  |  |
| 18                           | 450             | 10175             | 8801              | 5897               | 5101               |  |  |  |  |  |  |
| 20                           | 500             | 12633             | 10927             | 7280               | 6297               |  |  |  |  |  |  |
| 24                           | 600             | 18210             | 15752             | 10484              | 9068               |  |  |  |  |  |  |
| 28                           | 700             | 24812             | 21462             | 14270              | 12343              |  |  |  |  |  |  |
| 32                           | 800             | 32524             | 28133             | 18638              | 16122              |  |  |  |  |  |  |
| 36                           | 900             | 41280             | 35707             | 23589              | 20405              |  |  |  |  |  |  |
| 40                           | 1000            | 51120             | 44218             | 29123              | 25191              |  |  |  |  |  |  |
| 48                           | 1200            | 61452             | 53156             | 36275              | 36275              |  |  |  |  |  |  |

The Kv value expresses the amount of flow ( $m^3/h$ ) through a valve that would result in a pressure drop of 1 bar across a fully open valve (disc at 90°) at a temperature of 15°C

The Cv value expresses the amount of flow (usgpm) through a valve that would result in a pressure drop of 1 psi across a fully open valve (disc at 90°) at a temperature of 60°F

Note: Values as depicted above are purely theoretical (calculated through CFD analysis) and are in the process of being tested at the ESKOM Research and Innovation Centre Flow Laboratory.

The tests will be performed on the DN800 VENTOMAT nozzle check valve and values for other valves will be theoretically interpreted from these test results.

The Laboratory is an ISO 17025 accredited facility and all instrumentation that will be used for the tests will be certified according to the South African National Accreditation System (SANAS).





# **Technical Features and Engineering Design**

### **Optimised Valve Geometry**

The VENT-O-MAT Nozzle check valve was designed using CD-adapco's fully integrated CAE software package, STAR-CCM+ v12.0.

The main feature of the VENT-O-MAT Nozzle check valve is the extremely low head loss realized across the valve. When choosing a nozzle check valve it is a top consideration to keep in mind.

This low pressure loss leads to energy savings which makes it an attractive selection option when considering full lifecycle costs of running the plant.

The geometry of the valve was determined by using a simplified axisymmetric model that was parameterized to find the optimal geometry for the lowest head loss possible.



Parameterized 2D Axisymmetric Model



Images depicting the results of the CFD analysis and optimization

VENT-O-MAT<sup>®</sup>

## **NCV-B** Installation Dimensions





| Size (mm) |      |      | PN   | 10-PN | 16  |     |      | PN25 |      |      |      |     |     |      |
|-----------|------|------|------|-------|-----|-----|------|------|------|------|------|-----|-----|------|
|           | L    | b    | G    | D     | К   | Н   | H1   | L    | b    | G    | D    | K   | Н   | H1   |
| DN200     | 230  | 20   | 295  | 340   | 201 | 193 | 363  | 230  | 22   | 310  | 360  | 201 | 193 | 361  |
| DN250     | 290  | 22   | 355  | 405   | 250 | 230 | 433  | 290  | 24.5 | 370  | 425  | 250 | 230 | 422  |
| DN300     | 350  | 24.5 | 410  | 460   | 314 | 260 | 490  | 350  | 27.5 | 430  | 485  | 314 | 260 | 487  |
| DN350     | 405  | 26.5 | 470  | 520   | 358 | 313 | 573  | 405  | 30   | 490  | 555  | 358 | 313 | 556  |
| DN400     | 455  | 28   | 525  | 580   | 412 | 340 | 630  | 455  | 32   | 550  | 620  | 412 | 340 | 615  |
| DN450     | 520  | 30   | 585  | 640   | 463 | 391 | 711  | 520  | 34.5 | 565  | 670  | 463 | 391 | 665  |
| DN500     | 570  | 31.5 | 650  | 717   | 419 | 435 | 776  | 570  | 36.5 | 660  | 730  | 419 | 435 | 741  |
| DN600     | 685  | 36   | 770  | 840   | 519 | 503 | 923  | 685  | 42   | 770  | 845  | 519 | 503 | 881  |
| DN700     | 800  | 39.5 | 840  | 910   | 596 | 587 | 1042 | 800  | 46.5 | 935  | 960  | 596 | 587 | 956  |
| DN800     | 910  | 43   | 950  | 1025  | 692 | 650 | 1161 | 910  | 51   | 990  | 1085 | 692 | 650 | 1105 |
| DN900     | 1030 | 46.5 | 1050 | 1125  | 783 | 730 | 1291 | 1030 | 55.5 | 1090 | 1185 | 783 | 730 | 1306 |
| DN1000    | 1135 | 50   | 1170 | 1255  | 865 | 811 | 1437 | 1135 | 60   | 1210 | 1320 | 865 | 811 | 1344 |
| DN1200    | 1365 | 57   | 1390 | 1485  | 965 | 820 | 1563 | 1365 | 69   | 1420 | 1530 | 965 | 820 | 1581 |

\* Note: Installation dimensions on the PN40 NCV-B are available on request. Please consult the Aveng DFC technical department for further information.





# **NCV-BK Installation Dimensions**





SECTION B-B

| Size (mm)    |     |      | PN16 |           |     |     |      |  |  |  |  |  |
|--------------|-----|------|------|-----------|-----|-----|------|--|--|--|--|--|
| Olze (IIIII) | L   | b    | G    | D         | K   | Н   | H1   |  |  |  |  |  |
| DN200        | 121 | 20   | 295  | 340       | 168 | 191 | 361  |  |  |  |  |  |
| DN250        | 151 | 22   | 355  | 405       | 217 | 219 | 422  |  |  |  |  |  |
| DN300        | 181 | 24   | 410  | 0 460 259 |     | 257 | 487  |  |  |  |  |  |
| DN350        | 215 | 26.8 | 470  | 520       | 304 | 296 | 556  |  |  |  |  |  |
| DN400        | 245 | 28   | 525  | 580       | 329 | 325 | 615  |  |  |  |  |  |
| DN450        | 264 | 30   | 585  | 640       | 348 | 345 | 665  |  |  |  |  |  |
| DN500        | 305 | 32   | 650  | 717       | 363 | 384 | 741  |  |  |  |  |  |
| DN600        | 370 | 36   | 770  | 840       | 433 | 461 | 881  |  |  |  |  |  |
| DN700        | 430 | 39.5 | 840  | 910       | 485 | 501 | 956  |  |  |  |  |  |
| DN800        | 500 | 43   | 950  | 1025      | 696 | 593 | 1105 |  |  |  |  |  |
| DN900        | 560 | 46.5 | 1020 | 1125      | 721 | 681 | 1306 |  |  |  |  |  |
| DN1000       | 680 | 50   | 1170 | 1255      | 798 | 717 | 1344 |  |  |  |  |  |
| DN1200       | 740 | 57   | 1309 | 1485      | 880 | 838 | 1581 |  |  |  |  |  |

# **World Class Performance**

# VENT-O-MAT®

# Installation Recommendations

### **Horizontal Flow**



NCV-B and NCV-BK most suited for horizontal flow with disc directed towards the flow.

### 4 Diameters Minimum





When installed near a throttling valve, the check valve should be installed a minimum of 3 diameters downstream, or 2 diameters upstream of the throttling valve.

Check valves can be installed close to an upstream or downstream non-throttling isolation valve (e.g. VOSA Full Port Wedge Gate Valves).

Note: DFC Check Valves are not piggable



### Vertical Flow

Valves suitable for vertical flow up and down.

For vertical flow please contact Aveng DFC with process conditions





Check Valve should be installed a minimum of 4 diameters downstream of a reducer/expander or bend to ensure flow at valve is fully developed and turbulence is minimised.

Check Valve should be installed a minimum of 2 diameters upstream of a reducer or bend to avoid choked flow, which would cause the valve to only partially open



## **World Class Performance Water Valves**



- RGX sizes 50mm to 300mm up to 25 Bar
- RGXII sizes 50mm to 200mm up to 16 Bar
- RPS sizes 15mm to 50mm up to 16 Bar

# **DECTORYNAMIC** FLUID CONTROL

### **The Americas Operations**

RF Valves Inc. 1342-A Charwood Road Hanover, MD 21076, USA Tel: +1-410-850-4404 Fax: +1-410-850-4464 email:contact@rfvalve.com www.rfvalve.com

### **European Operations**

RF Valves, Oy. Tullitie 9, 53500 Lappeenranta, Finland Tel: +358-20-758-1790 Fax: +358-20-785-1799 email:rfvalves@rftek.fi www.rfvalve.com

### African Operations

Dynamic Fluid Control (Pty) Ltd 32 Lincoln Road, Industrial Sites, Benoni South, South Africa Tel: +27-10-823-8877 email:dfc@dfc.co.za www.dfc.co.za

### **Brazil Operations**

Industria e Comeercio de Valvulas do Brasil Ltds Address: Rua Álvaro da Silveira, 40 - Santa Margarida Belo Horizonte - Minas Gerais, Brasil Tel : +55-31-3658-3656 email address: rfq@rfvalve.com www.rfvalve.com

### **Australian Operations - NSW**

5 Vangeli St, Arndell Park, NSW, 2148 P.O. Box 156, Seven Hills, NSW, 1730 Tel: +61-2-8814-9699 Fax: +61-2-8814-9666 email: sales@ventomat.com.au www.ventomat.com.au